
Tutorial 6 - Computational Modelling

Ane López-González and Manel Vila-Vidal

Questions
• What is a Stuart-Landau oscillator (Hopf oscillator)?

• How can a model based on coupled oscillators simulate the dynamics of a simple network?

• How can such a model be used to characterize certain dynamical aspects of brain activity?

Objectives
1. Generating local dynamics: single-node oscillator

• Visualize and describe the dynamics of a single-node oscillating system near a Hopf
bifurcation.

• Change the regime (bifurcation parameter) of the oscillator to generate di�erent
local dynamics.

2. From local to global: network of coupled oscillators

• Understand how di�erent oscillators can be linked to obtain a network of coupled
oscillators and simulate data.

• Characterize changes in certain aspects of network dynamics as a function of
di�erent model parameters (coupling parameter, connectome).

3. Using a model of coupled oscillators to characterize brain dynamics

• Understand the role of the model parameters to constrain the model with real data.

• Fit the model with empirical resting-state human fMRI data and characterize certain
aspects of brain activity.

• Understand the use, applicability and limitations of whole-brain models.
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Introduction
Computational brain network models have emerged as a powerful tool to investigate the
dynamics of the human brain. In a broad sense, modelling refers to idealizing (or simplifying
while keeping the essential ingredients) the processes that generate the observed phenomena
in a real system. Theoretical models are often applied to study complex non-linear systems,
such as the brain, in order to investigate the interplay between known dynamical and structural
features, e.g. combining SC with local dynamics to generate resting-state FC. For this, it is
required to explain the relevant observable features and to ensure a robust interpretation of the
models’ parameters to link them back to biological variables. Thus, theoretical models need
to achieve a trade-o� between simplicity and richness to explain the mechanisms underlying
complex biological systems.

In this tutorial, a relatively simple whole-brain model will be introduced based on a set of
coupled oscillators near a Hopf bifurcation [1, 2]. This model is a deterministic model with
a bottom-up approach that has been used to describe the brain’s rsfMRI network activity in
di�erent experimental contexts. The model assumes that the brain’s resting-state activity
emerges from the interaction between brain regions in an interconnected neuroanatomical
network. Furthermore, the local dynamics are modelled by Stuart-Landau oscillators, which
allow us to study the phase and amplitude interactions in large networks. This whole-brain
model has been successfully applied to simulate the network non-linear dynamics occurring
at the ultra-slow scale of resting-state BOLD signals [1, 3]. Furthermore, the model global and
regional parameters obtained from the model can discriminate between brain states, thereby
improving our understanding of brain network and local alterations in di�erent brain states
[2, 4, 5, 6].

Overline
1. We will focus on understanding the key properties of a Hopf oscillator. In particular,

we will investigate the role of its bifurcation parameter, which describes if the system
presents oscillatory or noisy activity.

2. We will study the behaviour of a network of coupled Hopf oscillators in a simple simulated
network. The complexity of the network structure and dynamics will be altered by
changing the underlying connectivity matrix and the global coupling parameter.

3. Finally, the previously introduced whole-brain model will be used to �t empirical data of
resting state fMRI brain activity. The model parameters will be used to interpret certain
aspects of the underlying dynamics.

2



Part 1: Understanding a Hopf oscillator
First, we will introduce the Hopf oscillator. The normal form of a supercritical Hopf bifurcation,
i.e. Stuart-Landau oscillator [7, 8], describes the transition from noisy to sustained oscillations
oscillations [9], and is given, in the complex plane, by the following di�erential equation:

dz
dt = (a − |z|2 + i!)z + ��(t), (1)

where z is the complex-valued state variables z̄ is the complex conjugate of z, a and ! are the
bifurcation parameter and the intrinsic frequencies of the system in the range of 0.04-0.07 Hz,
respectively, and � is a Gaussian noise vector with standard deviation � = 0.02.

For a < 0, the local dynamics present a stable spiral point, producing damped or noisy
oscillations in absence or presence of noise, respectively. For a > 0, the spiral becomes unstable
and a stable limit cycle oscillation appears, producing autonomous oscillations with frequency
2�f = !. At the transition, when a ∼ 0, the dynamics display �exible noisy oscillations of low
amplitude.

Figure 1: Phase space for an example of a single Hopf oscillator. A) Subcritical Hopf oscillator (a < 0).
Top: In this regime, a stable spiral, or focus, exists at z = 0. The system relaxes towards the focus with damped
oscillations. In the presence of noise, however, the system �uctuates around the focus, thus producing noise-
induced oscillations. z0 = z(t = 0) indicates the initial condition. Bottom: temporal evolution of Real(z). B)
Supercritical Hopf bifurcation (a ≥ 0). Top: In this regime, the focus at z = 0 becomes unstable and a stable
limit-cycle appears, thus producing autonomous or self-sustained oscillations. Bottom: temporal evolution of
Real(z).
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Exercise 1
In this exercise, you will work with a Hopf oscillator. In particular, you will simulate the
dynamics of the oscillator for di�erent regimes (changing the local bifurcation parameter).
Please follow the next steps:

1. Open the script ‘exercise1.m’ in the VM with MATLAB.

2. Plot an overview of the dynamics of a Hopf oscillator when a = 0 (default value), i.e.,
when the oscillator is working in the phase transition.

3. Modify the value of the bifurcation parameter of the oscillator to simulate sustained
oscillations, i.e. a > 0. Try with di�erent values of a and observe the oscillations that
you obtain.

4. Modify the value of the bifurcation parameter of the oscillator to simulate noisy oscil-
lations, i.e., a < 0. Try with di�erent values of a and observe the oscillations that you
obtain.

Solution of exercise 1
You should obtain plots similar to the following ones:

Figure 2: Solution for exercise 1. Depending on the bifurcation parameter of the oscillator, the signals show
dynamics representing di�erent dynamical regimes. Top: oscillators in the phase transition show signals that
combine noise and oscillations. Middle: the signal shows self-sustained oscillations for a > 0. Bottom: the
system produces noise-induced oscillations for a < 0.
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EXTRA EXERCISE: study the stability of the oscillators in the di�erent regimes displaying the
dynamics in the phase plane. You should plot the imaginary and real parts of the signal in the
complex plane and obtain the plots showed in Figure 1.

Part 2: Simulating coupled dynamics in a network of oscil-
lators
In this second part of the tutorial, we will study the dynamics of a network of coupled Hopf
oscillators. The network consists of di�erent oscillators that in�uence each other’s activity.
We will consider a network containing N = 10 nodes that are separated in two communities
and with a hubs connecting both communities. The following matrix describes the interaction
between the nodes in such a network:

Figure 3: Network connectivity. Structural connectivity matrix describing the interaction strength between
nodes. This matrix contains two communities: the �rst one is composed by the �rst four nodes and the second
one by the last six nodes. There is a hub interconnecting all network nodes.

The network dynamics can be described by coupling the di�erent oscillators with a strength
proportional to the coe�cients of the matrix C , i.e., Cij :

dzj
dt = (aj + −|zj |2 + i!j)zj + g

N
∑
k=1

Cjk(zk − zj) + ��j(t), (2)

where g represents a global coupling scaling the structural connectivity Cij .The matrix Cij
is scaled to a maximum value of 0.2 to prevent full synchronization of the model. If we set
the values of each !i , the network dynamics depend on two ingredients: the global coupling
coe�cient (g) and the local parameters for each node (aj).

If we think of each node’s signal as describing the activity of a di�erent brain ROI and the matrix
C as the structural brain connectivity (SC), the model can be used to describe whole-brain
dynamics. The global coupling, g, is a scaling parameter that controls for the conductivity
of the �bers given by the SC. For low values of g the functional network interactions are
mainly restricted to nodes directly connected by high strength links in C. Increasing the
global coupling favours the propagation of recurrent activity within the network, allowing
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for correlations to emerge between nodes that are not directly connected with each other via
structural connections.

Figure 4: Global coupling parameter in the whole-brain network model. The global coupling model
parameter g scales the weights of the SC matrix. Low and high values of g represent weakly and strongly
coupled networks, respectively.

Exercise 2
The goal of this exercise is to understand the role of the global coupling parameter in the
model and how its value may in�uence the functional correlation patterns.

1. Open the script named ‘exercise2.mat’ in the VM.

2. Run the part where the network is de�ned (De�ne the network). At the end of this section,
you should be able to plot the matrix in Figure 3, where the interactions between the
nodes are de�ned.

3. Simulate the network dynamics in the case where there is no global coupling (g = 0),
i.e., there is no coupling between nodes. For the purpose of this exercise, we suggest
to set all nodes to be working at a = 0, except the hub, that should be working in the
oscillatory regime (a = 1). This choice is based on previous studies which suggest that
the best �t to empirical data arises at the brink of the Hopf bifurcation where a ∼ 0 [1].
Plot the nodes’ signals and the functional connectivity matrix.

4. Simulate the network dynamics in the case where there is global coupling (g>0), i.e., the
nodes interact with one another. To study the di�erence that the coupling parameter
can exert over the whole network, you can keep all nodes in the same regime as before
(all nodes at a=0, except for the hub, which works at 1=1). Plot the nodes’ signals and
the functional connectivity matrix for g = 0.5.

5. Change the g to a lower value (g = 0.2) and plot the nodes’ signals and the functional
connectivity matrix again.
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Solution of the exercise 2
In this exercise, we have changed the value of the global coupling parameter, while keeping
local properties �xed. We have used a simulated network containing two modules and one
hub. All nodes’ have been set to a = 0, except for the hub, for which we have used a = 1.

Figure 5: Solution for exercise 2. Di�erent outputs obtained changing the global coupling parameter. Top:
the case where there is no coupling, i.e., g = 0, shows that the nodes’ signals display asynchronous activity. This
variability is re�ected in the FC where the matrix show a sparse distribution of values, with maximum values
of 0.5 (without considering the diagonal). Middle: when increasing the global coupling parameter, all nodes
start to synchronize with the hub. The e�ect of the interactions translates into an increased correlation between
signals. Bottom: A high value of g favours the propagation of recurrent activity within the network, allowing for
correlations to emerge between nodes that are not structurally connected. Notice the high correlation values in
the FC. Furthermore, the hub, working in the oscillatory regime, orchestrates the network dynamics and keeps
all nodes in an oscillatory regime.
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Part 3: Fitting and modelling resting-state data
Finally, we will use the network model to understand some mechanisms of brain dynamics in
healthy subjects during resting-state. In this part, we will �t the dynamics of the oscillators
and the model parameters to reproduce empirical data (fMRI BOLD and DTI- SC). The natural
frequency of oscillations for each ROI is estimated from the peak of the power spectra obtained
from their BOLD signals in the frequency band 0.04-0.07 Hz. Then, the N = 83 brain regions
are coupled through the connectivity matrix Cjk , which is given by the structural connectivity
of healthy subjects. The matrix Cjk is scaled by the global coupling parameter g.

First, we can study the network dynamics for the homogeneous case, in which we set aj = 0 for
all nodes. This choice is based on previous studies which suggest that the best �t to the empir-
ical data arises at the brink of the Hopf bifurcation where a ∼ 0 [1]. In this case, the network
dynamics are determined by a single free parameter: the global coupling strength g. This pa-
rameter is estimated by maximizing the �t between the functional connectivity dynamics (FCD)
obtained using the empirial data and the simulated signals at various values of g [1, 2, 4]. See
Fig. 6. Speci�cally, empirical and simulated FCDs are compared using the Kolmogorov-Smirnov
distance of their values (KS-distance). For low and high values of g, large KS distance indicates
di�erences between the mean values of the FCD distributions. In the intermediate range of g,
shorter KS distance evidences a closer similarity between the empirical and the simulated FCDs.
We choose the g where the KS distance is minimized as the optimal working point of the model.

Figure 6: Fitting of global coupling parameter in the whole-brain network model. To estimate the
global parameter, we look for the model that best reproduces the distribution of FCD values (�xing all other
model parameters). We �rst obtain a single FCD matrix for the empirical signals and an FCD matrix using the
simulated signals for each value of g. Then, empirical and simulated FCDs are compared (for each value of g)
using the Kolmogorov-Smirnov distance (KS distance) of their values. The KS-distance shows minimal values
for a speci�c range of g values, which is considered to be the optimal global coupling g.

The optimal global coupling g shows distinct values for di�erent brain states characterized
by di�erent dynamics [5, 2], suggesting that this value contains information about the global
dynamics of the empirical data. Furthermore, by �xing this value, we can simulate whole-brain
dynamics under certain conditions of interest. Additional information can be extracted by
relaxing the homogeneity constraint on the local bifurcation parameters. To do so, the global
coupling parameters g can be �xed to the ones estimated previously, and the local parameters
aj are allowed to vary, thus introducing heterogeneity in the working point of the ROIs (see
extra exercise).
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Exercise 3
The goal of this exercise is to simulate the dynamics of resting-state activity in a healthy
subject. To do so, you are going to run the model for di�erent values of the global coupling g
and compare the simulated signals with empirical ones. Keep in mind that the �nal goal is to
determine the optimal value of g to reproduce the empirical observations.

1. Open the script named ‘exercise3.mat’ in the VM.

2. Load the structural connectivity and the BOLD time series of one subject. After �xing
all model parameters, run the pre-modelling part of the script. In this initial part, you
calculate the FC, the power spectrum, the omega and other variables that will be used in
the model simulation. In particular, the ! values are obtained from the power spectra of
the BOLD signals and the signal phases are stored for later use during the calculation of
the FCD.

3. Start a loop simulating the dynamics of a network with N = 83 nodes for di�erent values
of g. In each loop, the �t between the FCD matrices is also computed.

4. Plot the values of the �tting and interpret their values. You can also plot the empirical
and simulated FCDs to better understand the values of the K-S distance.

5. Load the ’ksP.mat’ vector which contains the values of the �tting for a higher resolution
of the g (i.e., the �tting has been calculated for smaller steps of g within the same range)
and interpret the results.

Solution of the exercise 3
In this exercise, we have �tted the model to describe the dynamics of a real case, considering
the structural connectivity extracted from DTI and the resting-state activity of BOLD-fMRI.
First, we have extracted some basic model parameters from the empirical data. Then, we have
performed a model �tting using the empirical and simulated FCD matrices.
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Figure 7: Solution for exercise 3. KS-distance between the empirical and the model FCD distributions, as
a function of g, for one subject. For low and high values of g, large KS distance indicates di�erences between
the mean values of the FCD distributions. In the intermediate range of g, shorter KS distance evidenced a closer
similarity between the empirical and the simulated FCDs. We considered the g where KS distance is minimized
as the optimal working point of the model. Top: the �tting for 4 values of g. Bottom: the �tting for a �ner
resolution of the g values.

EXTRA EXERCISE:
You can also use the optimization algorithm to extract the optimal values of the local bifurcation
parameters. In this case, the global coupling parameters g is �xed, but the local parameters aj
are allowed to vary, thus introducing heterogeneity in the working point of the nodes. The
individual aj are estimated from the data using a gradient descent method. You can �nd the
code and details in (https://github.com/decolab/Hopf_consciousness)).
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Additional materials
• Examples of use of the described model:

– Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain
dynamics by Lopez-Gonzalez et al. (The MATLAB code of the whole-brain models
are available on Github (https://github.com/decolab/Hopf_consciousness)) [2].

– A Hopf oscillator-based method for estimating e�ective connectivity. Groups of
e�ective connectivity estimates may be compared using the network-based statis-
tic. https://github.com/decolab/Effective-Connectivity--Hopf [10]. See also
https://www.youtube.com/watch?v=y6Hv-Jo8Etk.

– Turbulent-like dynamics in empirical humanneuroimaging data, by using a whole-
brain model for discovering the underlying mechanistic principles (https://github.
com/decolab/cr-turbulence)[11]. See also https://www.youtube.com/watch?v=

slCBN7-oIOI.

Key Points
• Whole-brain modelling study complex non-linear systems, such as the brain, in order to

investigate the interplay between known dynamical and structural features.

• The model based on Hopf oscillators has been successfully applied to simulate and
explain the mechanism underlying the network non-linear dynamics occurring at the
ultra-slow scale of resting-state BOLD signals.
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